(七)概率
1.事件与概率
(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别。
(2)了解两个互斥事件的概率加法公式。
2.古典概型
(1)理解古典概型及其概率计算公式。
(2)会用列举法计算一些 随机事件所含的基 本事件数及事件发生的概率。
3.随机数
了解随机数的意义,能运用模拟方法估计概率。
(八)基本初等函数Ⅱ(三角函数)
1.任意角、弧度
(1)了解任意角的概念和弧度制的概念。
(2)能进行弧度与角度的互化。
2.三角 函数
(1)理解任意角三角函数(正弦、余弦、正切)的定义。
(九)平面向量
1.平面向量的实际背景及基本概念
(1)了解向量的实际背景。
(2)理解平面向量的概念和两个向量相等的含义。
(3)理解向量的几何表示。
2.向量的线性运算
(1)掌握向量加法、减法的运算,理解其几何意义。
(2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义。
(3)了解向量线性运算的性质及其几何意义。
3.平面向量的基本定理及坐标表示
(1)了解平面向量的基本定理及其意义。
(2)掌握平面向量的正交分解及其坐标表示。
(3)会用坐标表示平面向量的加法、减法与数乘运算。
(4)理解用坐标表示的平面向量共线的条件。
4.平面向量的数量积
(1)理解平面向量数量积的含义及其物理意义。
(2)了解平面向量的数量积与向量投影的关系。
(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算。
(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。
5.向量的应用
(1)会用向量方法解决某些简单的平面几何问题。
(2)会用向量方法解决简单的力学问题与其他一些实际问题。
(十)三角恒等变换Com]
1.两角和与差的三角函数公式
(1)会用向量的数量积推导出两角差 的余弦公式。
(2)会用两角差的余弦公式推导出两角差的正弦、正切公式。
(3)会用两角差的余弦公式推导出两角和的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式,了解它们的内在联系。
2.简单的三角恒等变换
能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但不要求记忆)。
(十一)解三角形
1.正弦定理和余弦定理。
掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。
2.应用
能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。
(十二)数列
1.数列的概念和简单表示法
(1)了解数列的概念和几种简单的表示方法(列表、图像、通项公式)。
(2)了解数列是自变量为正整数的一类特殊函数。
2.等差数列、等比数列
(1)理解等差数列、等比数列的概念。
(2)掌握等差数列、等比数列的通项公式与前 项和公式。
(3)能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题。
(4)了解等差数列与一次函数的关系、等比数列与指数函数的关系。
(十三)不等式
1.不等关系
了解现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。
2.一元二次不等式
(1)会从实际问题的情境中抽象出一元二次不等式模型。
(2)通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系。
(3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图。
3.二元一次不等式组与简单线性规划问题
(1)会从实 际情境中抽象出二元一次不等式组。
(2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组。
(3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。